NumPy Basic tutorial 4 - Python Programming



NumPy Basic tutorial 4 - Python Programming Harsha Navallkar Blog Daily Experience
NumPy Basic tutorial 4 - Python Programming
Open Anaconda Navigator
Launch Sypder

If you have not seen the earlier tutorials 

PROGRAM 1
import numpy as np 
arr = np.array([[1,2,3],[4,5,6],[7,8,9]]) 

print ('Original array' )
print (arr)

print ('amin() function  1') 
print (np.amin(arr,0) )

print (' amin() function 2' )
print (np.amin(arr,1) )

print (' amax() function 1' )
print (np.amax(arr, axis = 0))

print (' amax() function 2' )
print (np.amax(arr) )

print ('ptp() function 1')
print (np.ptp(arr))

print (' ptp() function along axis 0')
print (np.ptp(arr, axis = 0))

print ('ptp() function along axis 1')
print (np.ptp(arr, axis = 1))

OUTPUT
Original array
[[1 2 3]
 [4 5 6]
 [7 8 9]]
amin() function  1
[1 2 3]
 amin() function 2
[1 4 7]
 amax() function 1
[7 8 9]
 amax() function 2
9
ptp() function 1
8
 ptp() function along axis 0
[6 6 6]
ptp() function along axis 1
[2 2 2]

PROGRAM 2
import numpy as np 
arr = np.array([[1,2,3],[4,5,6],[7,8,9]]) 

print ('Original array' )
print (arr)

#percentile
print ('percentile() function')
print (np.percentile(arr,50)) 
  
print ('percentile() function along axis 1') 
print (np.percentile(arr,50, axis = 1))

print (' percentile() function along axis 0')
print (np.percentile(arr,50, axis = 0))

#median
print (' median() function:') 
print (np.median(arr)) 

print (' median() function along axis 0')
print (np.median(arr, axis = 0)) 

OUTPUT
Original array
[[1 2 3]
 [4 5 6]
 [7 8 9]]
percentile() function
5.0
percentile() function along axis 1
[2. 5. 8.]
 percentile() function along axis 0
[4. 5. 6.]
 median() function:
5.0
 median() function along axis 0
[4. 5. 6.]

PROGRAM 3
import numpy as np 
arr = np.array([[1,2,3],[4,5,6],[7,8,9]]) 

print ('Original array' )
print (arr)
print ('mean() function') 
print (np.mean(arr))

print ('mean() function along axis 0')
print (np.mean(arr, axis = 0))

print ('mean() function along axis 1') 
print (np.mean(arr, axis = 1))

print (' average() function' )
print (np.average(arr))

OUTPUT
Original array
[[1 2 3]
 [4 5 6]
 [7 8 9]]
mean() function
5.0
mean() function along axis 0
[4. 5. 6.]
mean() function along axis 1
[2. 5. 8.]
 average() function
5.0

PROGRAM 4
import numpy as np 
print (np.std([1,2,3])) #standard
print (np.var([1,2,3])) #variance

OUTPUT
0.816496580927726
0.6666666666666666

PROGRAM 5
import numpy as np  
arr = np.array([[8,0,3],[4,9,7]]) 

print('original array') 
print(arr)

print ('sort() function')
print (np.sort(arr))

print ('Sort along axis 0')
print (np.sort(arr, axis = 0)) 

print ('Sort along axis 1')
print (np.sort(arr, axis = 1))

OUTPUT
original array
[[8 0 3]
 [4 9 7]]
sort() function
[[0 3 8]
 [4 7 9]]
Sort along axis 0
[[4 0 3]
 [8 9 7]]
Sort along axis 1
[[0 3 8]
 [4 7 9]]

PROGRAM 6
import numpy as np 
arr = np.array([6, 2, 9]) 

print ('original array') 
print (arr)

print ('argsort()' )
arsort = (np.argsort(arr))
print (arsort)
  
print ('Reconstruct original array in sorted order')
print (arr[arsort])

print ('Reconstruct the original array using loop') 
for i in arsort: 
   print (arr[i])

OUTPUT
original array
[6 2 9]
argsort()
[1 0 2]
Reconstruct original array in sorted order
[2 6 9]
Reconstruct the original array using loop
2
6
9

PROGRAM 7
import numpy as np 
arr = np.array([[6, 2, 9],[1,0,3],[8,4,7]]) 

print ('argmax() function') 
print (np.argmax(arr)) 
  
print ('Index of maximum number in flattened array') 
print (arr.flatten())

print ('Array containing indices of maximum along axis 0')
m = np.argmax(arr, axis = 0) 
print (m)

print ('Array containing indices of maximum along axis 1')
m = np.argmax(arr, axis = 1) 
print (m)
  
print ('argmin() function')
m = np.argmin(arr) 
print (m)

print ('Flattened array') 
print (arr.flatten()[m])
  
print ('Flattened array along axis 0') 
m= np.argmin(arr, axis = 0) 
print (m)

print ('Flattened array along axis 1' )
m = np.argmin(arr, axis = 1) 
print (m)

OUTPUT
argmax() function
2
Index of maximum number in flattened array
[6 2 9 1 0 3 8 4 7]
Array containing indices of maximum along axis 0
[2 2 0]
Array containing indices of maximum along axis 1
[2 2 0]
argmin() function
4
Flattened array
0
Flattened array along axis 0
[1 1 1]
Flattened array along axis 1
[1 1 1]

If you have not seen the earlier tutorials 


NumPy Basic tutorial 4 - Python Programming